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We consider three typical game problems in conflict-control systems. We estab- 
l&h that in the regular case the optimal methods of control can be approximated 

by continuous strategies so as to achieve an effect as near optimal as desired 
(from the viewpoint of the pursuer or the pursued). 

1. Let us consider the motion I (t) = (si (t)}, (i = 1, . . . . n) described by the vector 
differential equation 

dz / dt = A (t)z + B (t)u - C (0~ + f (t) (1.1) 

Here A (t), B (t), C (t) are matrices of dimensions n X II, n X r, n X s respectively; 
f (t) is an n-dimensional perturbation vector ; u and u are control vectors of dimensions 
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r and s, constrained at each instant by the conditions 

u [‘I E u,, v 111 E v, (1.2) 

where Ut and 8, are closed bounded convex sets in the r- and a- dimensional spaces J$ 
and Ed, respectively, varying continuously with changing t. 

We consider the following three problems (see [l-6]. 
1. The conflict encounter problem. The final instant 6 is given. The 

problem of the pursuer, being guided by the control u [tl, is to minimize the quantity 
11 (z (e)h 119 while the pursued, being guided by the control u [t], strives to maximize this 

quantity. Here the symbol (& denotes a vector composed from the first m coordinates 
of vector % and (I q II denotes the Euclidean norm of vector q. 

2. The pursuit problem. We are given a closed bounded convex setMiin an 
m’-dimensional space X,. The pursuer strives to bring the motion (z It]), onto the set 
M in the shortest possible time. 

3. The evasion problem. Once again we are given a closed bounded con- 
vex set.M in an m -dimensional space X,,, . The pursued strives to keep {I [t]I, from 

hitting onto the set M. If he does not succeed in doing this, his aim becomes to postpone 
of bringing the motion {z ltlj, onto the set M, as long as possible. 

In all the problems we assume that the initial state z [to1 = z. of system (1.1) is fixed. 

In correspondence with c], by the strategies u (t, 2) and V (t, .z) of the first and the 
second player we shall mean closed bounded convex sets, specified for each value of 
{C 2). upper semicontinuous relative to inclusion, where U (t, z) c Ut and V (t, CT) c Vt, 

and by a solution of Eq. (1.1) we shall mean any absolutely continuous function z (t) 
satisfying almost everywhere the condition 

dz / dt E A (t)z -j- B (t) ff (t, 2) - c (t) V (t, 2) -t- f (t) 0.3) 

Then, in correspondence with the results in 141, the minimax strategy UI” (t, z) in prob- 

lem 1 satisfies the following relation: 

r” (cot 20) = maxu max,.tl {II{ z WI, II J x [Ul” (4 4, V (t, 4, fos01? d 

< maxO maxzItl CII Cz WI, II I x [U (b 4, V (b49 to, ~0ll (1.4) 

In Problem 2 the minimax strategy uz” (t, Z) satisfies the relation 

6” (to, ~0) = max, max,Itl (6” I x [ UZ’ (f, 4, V (4 z), to, al) Q 
d max, maxXrtl (6 I x [U (t, 4, V (4 4, to, ~01) (1.5) 

Here and subsequently, X 1 U (t, 4, V (6 z), to, zo] is a family of motions of system 

(1.3). generated by the strategies U (t, z), V (t, z), and by the initial data to, zo, while 
0 is the time it takes for the motion {z It]), to go onto the set M, where 

5 ItI E x [U (G 5), V (G 51, to, 201. 

The maximin strategies VI0 (h 2) and VzO (t, 2) in Problems 1 and 3 satisfy the con- 
ditions 

I?0 (to, 20) = min, min,&(I 42 (6)j,11 IX [U (t, z), Vi0 (t, 2). h QIP > 

> minv minXIt {II (2 (a)), II I x [U CL 2). v(t. 4, to, XolP (1.6) 

80 (to. 20) = minumin,Itl (00 1 X [U (t, z), V2’(t, 4, to, zoll > 
> minv minXI,] 46.1 x [U (L 4. VP, 4, k ZnlJ (1.7) 
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If the regular case holds in Problem 1 (for example, see [4,7] ). then a method is 
known for constructing the minimax and the maximin strategies of the pursuer and of 

the pursued .Here a case is called regular if the maximum of the expression 

e” (C 2) =url” [pz (t, 6, I) - p1 (t, 6, I) - l’zO (t, 2, tt)] (1.8) 
I 

for E’ if z) > 0 is reached on a single vector among all vectors of the form 

1 = {Zi) 6=1,....nh lj = 0 for j> m V-9 

The prime denotes transposition, while the meaning of the quantities occuring in 

(1.8) is defined by the relations 

PI 0,6,4 = max,(E) [ jBI(S)SIFJIwSFq, If (5) E u, (l.loz 
! 

(1.11) 

8 

where X it, ~1, S [C ~1 are the fundamental matrices of the equations 

dx / at = A (t)z, ds / dt E - A’ (tb (1.13) 

Below we consider the approximations of the optimal strategies U“’ (C x), p (TV 5) 
by continuous strategies, i.e., by those strategies which are given by single-valued 

continuous functions u (r, z), v (t, I), satisfying the conditions 

u(t*z)E u,, 7J U, 2) E v, 

We shall show in the following that such an approximation holds in the Problems l- 3 
stated. The precise sense of this approximation will be made clear during the analysis 
of each of the three problems. 

2. We consider Problem 1. Let us first dwell on the scalar case when 8 (r) = b (r) 

is an n-dimensional vector and the set U, is representable in the form 

ut = (u : IUldPt P>O? (2.1) 

and the regular case holds. Then the minimax strategy of the first player is determined 

as follows [4]: when 6 (t, 5) > 0 the set U” (t, x) is formed by those and only those 
quantities uO, for which the condition 

S’ (G s)b (r)a“ = max,, Is’ (t, z)b (t)u] I for 1 u 1 < p (2.2) 

is fulfilled, where s (t, x) is the solution of Eq. (1.2) under the boundary condition 

s (fl) = 2” and the vector P is determined from (1.8). In the region E“ (t? X) < 0 we 

have U” (t, Z) = Us. Note that the relations 

P (to, 50) = FO (to, zO) = e” (to, x0), if 1 8 (to, x0) > 0 (2.3) 

r” (&IV x0) = FO (to, 20) = 0, if e” (to, 20) < 0 

are fulfilled in the regular case of the game. 
The following theorem is valid under the assumptions made: 
Theorem 2.1. For any a > 0 there exists a continuous strategy ua (g, z) satis- 

fying the relation 
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aup0 supxftl MM)), IJ I x 1~” (h 4, v (t), to, 3x4 < r” PO, ~0) t a C2..It) 

where u (t) is any admissible realization, i.e. an integrable function satisfying the con- 
dition u (t) E Vt. 

Let us prove the theorem. We introduce the function. o (t, 5) = s’ (t, z)b (t). Then, 

taking (2.1) into account, from (2.2) we get that the minimax strategy is determined 
by the conditions 

U” (t, 5) = 

i 

IL, if o&z)>0 and E”(Lz)>O 

-P. if o(t,z)<O and e’((t,3)>0 (2.5) 

- P 6 u” < p, if 0 (t, 2) = 0 or e"(f.z)<O 

We take an arbitrary number a > 0 and in the (n + 1) -dimensional space Xr (81 = 
= (t, Z: t < ti> we define the sets hr, N,, iV3, iCal N,, N6 in the following manner: 

iv1 = {t, 5: 0 (t, 5) > Vqap (6 - to); so (L 5) > 0 N4 = Jt, z: e” (t, z) > ‘/,a> 

~vz = @, 2: 0 (t, 5) < --‘/@p (6 -- to); so (t, z) > O> N, = (t, z: 0 < E” (t, z) <l/3+ 

AV~ = it, 5: I 0 (t, I) 1 < ‘Idup (6 - to), E’ (t, 2 > 0) NB = {t, z: cii (t, x) Q q) 

Note that the sets Np, N,, NB do not intersect and comprise the whole space Xt (6). In 

Xr {*J we now define a strategy ZP (r, CC) by setting 

u (t, z), {r, 23 E NL 

ua (t, 2) = 

1 

U* (t, z) = 2a-re” (t, 5) u (t, z), @,x] E h’s, 

0, Ct, ~4 E Na, 

U (t, 2) = 

1 

P, Cl, ~1 E h’1 

-p, (t, z$ E Nz (2.6) 

p* = 4p22-’ (6 - to) CO (t, z) @, z) E N3 

Here u (t, 2) is a continuous function. Obviously, uG (r, 2) is defined and is continuous 

on the whole space Xt dep. 
Let us now see how E” (t, 2) from (1.8). will vary in the region N1 when the second 

player uses any admissible realization u (t). In the regular case the function so (G 2) is 

differentiable in the region .sC (t, Z) > 0 and, therefore, by computing the derivative d&“/dt 

along a motion of system (l.l), generated by the controls ucr (t, z), v (t), we obtain (for 

example, see [8]) 
de‘ i dt = ma% ]m (t, z)u] - o (t, x)u” (t, z) - max, [s’ (t, 5) C (t)v] + S’ (t, z)C (t)v(t} 

for I u I < 11, u E Vt 
and taking into account that in the region Nd the continuous strategy 

from U” (t, 5) from (2.5) and (2.6), only on the set N, , we have 

de’ u 
dt G 2 (6 - to) 

From (2.Q (2.6) we obtain 

Then it follows from (1.8). (2.3). (2.6) that 

11 &r (6)), 11 = En [61 < r” (tot 50) + a 

Hence follows the theorem’s assertion. 

(2.7) 

U’ (t, 5) differs 

(2.3) 

(2.9). 
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By analogous calculations we can show that under a suitable approximation of the 
maximin strategy v” (t, z) by the continuous function u” (t, zj in the regular case of the 
encounter problem and under constraints on the control of the form 

vt = cu: I v I < v, v > 0) (2.10) 

the following condition holds : 

inf, inf,[,, (11 15 (@I, II I x [u (t), 2~~ (b 2). to, zol) >, ro (to, zo) + a (2.11) 

where u (t) is an admissible realization. Thus, here too we can construct a continuous 
strategy va (t, z), approximating the maximin strategy such that the result of the game 
will differ from the optimal result by an amount as small as desired. 

3. We now consider Problem 2 (on pursuit) stated in Sect. 1. We shall assume that the 
constraint on the pursuer’s control is given in form (2.1) and that the regular case holds. 
Here the case is regular if the maximum of the expression 

e” P. xv 8) = ;,g IPa (r? 6, I) - p1 (L 6, I) - l’xO (t, 5, 6) - maXp (Z’p}] (3-i) 
6 

for any 6 > to and for the condition 6’ (t, z, 6) > 0 is achieved on a single vector P 

among the vectors of form (1.9). In relation (3.1) the quantities pr (t, B, I), pz (t, 19, I), 
2 (t, 5, 6) are determined from (1.10) - (1.13), and the maximum of the quantity (E’p} 
is taken over all vectors p such that --p E M. 

Then there exists (see [S]) a pursuer’s strategy u0 (t, 2) which ensures that {I [t]}, is 
guided onto the set M at the absorption instant 6 = SoM (to, z,), where eofil (to, zo) is the 

smallest possible time in which the region of attainability of process (1. l), for all pos- 
sible programed controls u (t) and for any fixed programed control, v (t) , wiil first con- 
tain at least one point of the set M. 

The strategy u” (t, 2) can be determined in the following way by using the results in 
@I. In the (n -/- I)-dimensional space Xt {soM (to, zo)) we introduce the sets W, and 

wz : 
w, cz {t, 5: ELI (1, 5) > 01, w, = {t, Z: E” (t, Z) < 0) 

Then, on the set WI the strategy v” (t, 5) is determined by those and only those quan- 
tities u” for which the condition 

S’ (t, z)b (t)u” = max, [s’ (t, s)b (t)ul for I u I 6 P (3.2) 

is fulfilled; U” (t, Z) = Ut on the set W *. In formula (3.2) s (6 2) is determined from 

conditions (1.8)-(1.13) and is a continuous function of all its arguments in the open 
region WI. 

The foilowing theorem holds: 
Theorem 3.1. For any a > 0 there exists a continuous strategy ua (t, z) such 

that the condition 

supvsup,I,, mine {P [{s (6)),, M] \ X 1~” (t7 d7 V (t)t to, Sol) 6 a (3.3) 

for t0 < +3 < 60~ (to, To) 

is fulfilled at the instant SoM- (to, zo) , Here p [q, Ml is the Euclidean distance from 
the point q to the set M. The proof of Theorem 3.1 does not differ essentially from 
the proof of Theorem 2.1 and, therefore. we merely sketch the arguments. 

In the (n f i)-dimensional space X, {SoM (to, x0)) we define the sets N1 and Nt 
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6 3 : 1 S’ (tv 4 b (t) I > 4p (80&I (b: zo;co) _ tO)and a0 (t, Z, %*I (to, 5,,)-> t} 

t, ;z : 1 s’ (t, z) b (t) 1 6 
a 

4P (8”” (to, zo) - to) 
or ~0 (t, 5, ho” (to, ~20)) d % 

Just as in Theorem 2.1, here we have constructed a continuous function ZL’ (t, 5) such 
that 

u= (t, 2) = u” 0, z), if {t, 5) E NIT ZP (t, 5) E ut, if {t, z) E N, 

Then, by computing in the region e0 (t, 5, SO&f (to, zO)) > 0 the derivative de’ / dt 
along the motion of system (1.1) generated by the strategy ua (t, Z) and by any admis- 

sible realization u (t), we obtain inequality (2.8). By integrating this inequality we con- 
vince ourselves that condition (3.3) holds. This proves the theorem. 

4. Let us consider Problem 3 under the condition that the constraints onthe players’ 
COntrols are specified by conditions (2.1). (2.10) and that p > v and the functions 
B (t) = C (t) = b (t) in Eq. (1.1). 

Then the regular case of (3.1) holds and for any CC > 0 we can indicate a strategy 
vu (tV 5) ensuring the evasion by the motion {Z [t]), of going onto the set M until the 
instant’ soM (to, 50) - ‘/,a. Following the results in 161, we can determine the strategy 
vu (t. 2) as follows. We introduce the sets iv1 and N, : 

N1 = (t, 2: mine ]a0 (t, z, S)l > 0 for t Q 6 < SoM (to, x0) - ‘/,a} 

Nz = {t, z: min, [E’ (t, it, S)] < 0 for ‘t < 6 < SoM (to, zo) - 1/2a) 

Then for each {t, 5) E N1 the strategy Va (t, z) consists of those and only those V” for 
which the following condition is valid 

g’ (t, z)b (t)v” = maxv ]g’ (t, 4, b (t)rl for 1 v I < v (4.1) 

x 

g’ (t, i) = -grad h (t, z), h (t* 2, = s 4 
&O (t, 2, 4) (x = 60M - l/za) (4.2) 

t 

The set Va (t, z) coincides with Vt in region Nz. The following approximation theorem 
holds here just as for Problems 1 and 2. 

Theorem 4.1. For any a > 0 there exists a continuous strategy ua (t, 5) such 
that the relation 

infu inf,f,J min, (p [{z (6),}, Al] 1 X [u (t). va (t, 4, to, 201) > 0 

to d 6 < 60~ (to, 5) - a (4.3) 
is valid. 

Let us prove the theorem. We inaoduce the function h (t, I) = g’ (t, Z) b (t). Then 
formula (4.1) implies that the evasion strategy is determined by the condition 

v, if h (t, z) > 0 and P (t, z) > 0 
vu (t, 5) = 

( 
-v, 1t h (t. 2) < 0 and P (1, 4 > 0 (4.4) 

-V<]IO]<V, if h (t. 2) =0 or $(t, 2) -SO 

B (t, 2) = mine E” (t, 2, 6) for t < 6 < fboM (to, zo) - ‘l2a 

We remark that when E” (t, Z, 6) > 0 the function E” (t, Z, b)‘satisfies a Lipschitz 
condition in 6 

] E” (t. 2, 6,) - E” (6 2, 82) 1 < 15 1 *I - 6, 1, L>O 
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We introduce the sets 

Nl = {t, 2: k (4 2) > v’ (k); p (t, 2) > O), NI = {t, z: B (t, 4 > 6) 

N, = {t, 2: k (6 2) < = v’ (k);j3 (t, z) > 0). N, = {t, I: 0 < fi (t, CT) \< a} 

N s = It, 2: [ k (tt 2) 1 <V’ (k); fi (t, Z) > 0), NO = {t, Z: B (6 4 < 01 
v’ (k) = k/2v [&,M (to, z,,) - to] 

Here k and 8 are positive numbers satisfying the condition 

1 La 
k+h(to, zo)<~ln~ 

We now define a continuous strategy ua (t, ,z) by setting 

1 

v (L 2) It, 2)~ No, 

v= (t, z) = u* (t, z). {t, 2) E Nsr 

0, V, 2) E Na, 

u* (t, 5) = a-b (t, 4f3 (t, 4 

(4.5) 

(4.6). 

Here the continuous function u (t, z) is given by the relation 

1 

v, it, b) E NI 

v (t, I) = - v, {t, 5) E Na 

v*, {t, 21 E Na 
where 

v* = 2v2k-’ (6,,M (to, z,,),- to), h(t, z) 

Let us show that the strategy ua (t, z) thus defined ensures that the motion {z It]}, 
will evade going onto the set M until the instant .S,,M (to, z,,) - a. Obviously, to do this 

it is enough to show that the inequality fi [t] > 8 holds upto the instant ttoM (to, 20) - a 

along the motion of system (1. l), generated by the controls u (t), vu (t, 2). Indeed, the 
condition fi (to, zo) = B [toI > 6 is fulfilled at the initial instant to. Let us assume the 

contrary. Suppose that the equality fi [tl]==a is fulfilled for the first time at the instant 
tl. This means that the vector {tl, z [t& hits onto the boundary of set Ng. Then, 

according to [S], by computing the derivative do / dt along the motion of system (1.1) 
generated by the controls u (t), d (t, z) and by taking into account that vu (t, z) differs 

from Va (t, z) when (t, Z} E No , only on set N8, we obtain 

dh k 

-z- d fioM (to, zo) - to 
(4.7) 

It follows that 
h [tll d h [toI + k (4.8) 

On the other hand, for all values of {t, t) such that j3 (t, z) = 6 and t Q 19,~ (to, zo) 
the inequality 

h (4 4 > kin $ 

is valid and, hence, 

h (rl, 2 [fll) = h [tl] > -$ln$- (4.9) 

Then from (4.8). (4.9) it follows 

+ In $< h [loI + k (4.10) 

Conditions (4.5) and (4.10) contradict each other and, hence, the motion (z [rl), 
does not leave the set N1 until the instant SoM (to, zo) - a. This proves the theorem. 

6, In conclusion we consider a more general case when the constraints on the controls 
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u and u are given in form (1.2), but Ut and V, are arbitrary closed bounded convex 
sets continuous in t. Moreover, we shall assume that in Problem 3 the sets ut and vt 

are equally oriented and are similar with a similarity coefficient fi > 1 and that B (t) = 
= c (t). 

Lemma 5.1. Suppose that we are given a continuous r-dimensional vector-valued 
function h (t, 2) in an (n + i)-dimensional space Xt and let Wt be a closed bounded 
convex set in an r-dimensional space E,, containing 0 and continuous in t. Then for 

any a > 0 there exists a continuous function wb (t, 5) E Wt such that 

h’ (t, 2)~” (t, 2) >, max, [h’ (t, z)wl - cc for w E Wt (5-i) 

Lemma 5.1 can be proved in the following way. For any t it is necessary to construct, 
in the r:-dimensional space E,, a strictly convex set Gt containing wt such that for any 

vector g E G, we can find a vector w E Wtisuch that ]I g - w 11 < -q, where q > 0 is a 

preassigned arbiaarily small number not dependent on t. 
Because the set Gt is strictly convex the maximum of the expression 

h’ (t, s)g” = maxg [h’ (t, s)g] for g E Gt (5.2) 

is attained on a single vector g” = g” (i, z), and we can show that g” (2, z) is a contin- 
uous function of (t, 2) on the set N = {t, i: h [t, z) # 0). If we define a function 
w” (t, z) E Wt from the condition 

11 ~o.(t., z) - g” (2, 2) = II min,II w-g” (4 4 II, for w E w, (5.3) 

then it turns out that it is single-valued since the minimum of expression (5.3) is 
achieved on the single vector wd= w” (t, z) , and is continuous on set N. Furthermore , 
for any a > 0 we can find tl > O such that inequality (5.1) holds for (!t, ~3 E N . Hav- 
ing defined a function w” (t, z)’ by the’relations 

wa I(t., 2) = 
1 

w” (C 5). if IIh(t, z)II>k-l 

k II h (t. 5) II w” (t. 5). if 1 h (t, z) I< k-i 
k =6/a, 8 =maxtmax,IIwll for wE Wt 

we obtain the assertion of Lemma 5.1. 

(5.4) 

(5.5) 

Using Lemma 5.1 we can construct, for Problems I- 3, continuous approximate stra- 

tegies v” (t, 4, V” (t, x) such that in the regular case Theorems 2.1 - 4.1 will hold not 
only for constraints of the form (2.1), (2.10) but also in the general case of constraints 

(1.2). It is required only that we repeat, with conceptual variations, those approximate 
consauctions which we have described above in the scalar case. 

Note 5.1. In many particular cases the approximations dealt with in Lemma 5.1 
can be written out in explicit form without great difficulty. For example, if the con- 

straints on the controls u and u have the form 

ut = @I, . ..I z+: ] “i I < pi w7 v* = (LUI, .*a, ug I uj I > Vi (d3 
Pi (t) > 0 (i = 1, .**, r), Yj (2) > 0 (j = 1, a.., s) 

The author thanks N. N. Krasovskii for valuable comments. 

(5.6) 
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